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ABSTRACT

This paper deals with the statistical analysis of strength and
fracture of materials in general, with application to fiber composites.
The "weakest link'" model is considered in a fairly general form, and
the resulting equations are demonstrated by using a Weibull distribution
for flaws. This distribution appears naturally in a variety of
problems, and therefore additional attention is devoted to analysis and
statistical estimation connected with this distribution. Special
working charts are included to facilitate interpretation of observed
data and estimation of param=ters. Implications of the size effect
are considered for various kinds of flaw distributions.

The paper describes failure and damage in a fiber-reinforced system.
Some useful graphs are included for predicting the strength of such a
system. Receat data on organic-fiber (PRD 49) composite material is
analyzed by the Weibull distribution with the methods presented here.
The contents should serve as a useful handbook for data chezracterization

and statistical fracture analysis.
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INTRODUCTION

The tensile strength of brittle materials is variable and usually
low. As a result, a variety of statistical methods have been developed
to aid in design of brittle structures under tensile loading.

The reinforcing materials used in resin-matrix composites are often
brittle (e.g., boron, graphite, or glass filaments). The strength
behavior of these filaments can be approached using the methods which
have been traditionally applied to brittle materials.

There is abundant evidence to iir.licate that ultimate strength of
any material is less variable if failure is preceded by plastic flow or
microcracking, so that brittleness - where failure is not preceded by
either - is inevitably accompanied by strength variability. The causes
of this variability are many and varied and are related to both material
factors and inherent testing problems.

At one time it was thought that imperfect experimental technique
caused most of the specimen-to-specimen variation in laboratory
measurements of strength of a brittle or complex material. However,
development of new and sophisticated specimens and improved techniques
has not been sufficient to eliminate the practical statistical problem,
and gradually the need for statistically oriented experiments became
more widely recognized.

In this paper some statistical models are reviewed for strength of a
brittle material and the interpretation of test results in terms of the
Weibull distribution. Some recent data on a fiber-composite material are
used to illustrate the usefulness and potential limitations of a simple

statistical interpretation.

, Technical Memorandum 33-580



I. STRENGTH OF MATERIAL WITH FLAWS
1. THE SIMPLE CHAIN OR SERIES MODEL

Variability of strength may be explained by the fact that materials
inevitably contain a distribution of flaws of various severity, such as
surface scratches, cracks at grain boundaries, inclusions, etc. Certain
flaws may be characteristic of the specimen fabrication and handling
procese: for example, surface cracks introduced during machining.

Such defects would be expected on the surface of the specimen. Other
defects may be dependent only on length: e.g., chipping or spalling along
sharp edges. Still other mechanisms may produce regions of severe

local weakness throughout the material's volume, in which case the
strength will be an inverse function of size, since flaws of varying
severity are present and a smaller specimen is less likely to contain

a sever flaw.

Whatever the distribution of the flaws, a basic z2ssumption in
predicting tensile strength of a brittle material is that, for a given
stress, the worst flaw controls strength, just as the strength of a
chain is controlled by the weakest link.

In fact, let's consider the statistical problem of a chain whose
links have varying strengths. The weaker links can be thought of as
representing material with more severe defects.

If the fraction S(o~) of the links have strengths exceeding o ,
then a chain composed of N links will successfully transmit the stress T
only if all its links survive. The probability that this occurs is the
joint probability of N links surviving, namely SN. The probability, G,

that the chain fails (that is, that at least one link fails) is:
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G=1-s\ (1)
The number of links has an extremely strong effect on chain strength.
This is shown schematically in Fig. 1 for a hypothetical link-strength

distribution. This is an example of size effect.

1.0 —>—
/
/ 20-link chain

.'-
]

Single 1ink

0.5

Feilure prol

Strength, 0 —=

Fig. 1. Strength distribution for an
individual link and a chain made
of 20 such links.

The probability density distribution for eingle links and Z0-link
chains is the first derivative of the functions graphed in Fig. 1.

These aic depicted schematically in Fig. 2.

Probobility density, dG/do —e

Strength, ¢ —-

Fig. 2. Probability densities for the link
and chain of Fig. 1.
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In these two figures the curves for the chain represent the statistical

behavior of the weakest of the 20 links, while the curves for the single
link are based on the hypothetical link-strength distribution. We note
in Fig. 2 that the chain (weakest link) distribution becomes distorted
and less symmetric than the parent distribution.

The peaks of the curves in Fig. 2 represent the most probable values
(modes) of the distributions, for which formulas may readily be developed.
Using primes to denote differentiation with respect to strength,® , the

mode of strength is found by solving
2
d N
(1 -8%) =,
do

which gives, for least value,

88" = - (N - 1) (SH°2, (2)

By similar arguments it may be shown that the most likely maximum

value is a solution of

fz[‘l -9 -,

whica gives
{1-8)8" «(N- 1) (sY)2 (3)

If an algebraic expression were put in for S these formulas would relate
the modal extreme values of strength to the distribution size, N, and
the distribution parameters in the function S.

For example, the link-strength distribution might be the Gaussian,

g 2
= 1 -tff2 . .
] j; N, e / dt = erfc(t),
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whose derivatives are

2
$' s g e Panast ses,

where t is the measure, in units of standard deviation, from the mean.

The extreme values are given by

2
N=1+N27 |t] /2 erfc(t), (4)

where erfc(t) is the complementary error function defined above. Because
of symmetry both modal extremes are estimated by Eq. (4). This equation,
which predicts the most probable extreme value of t in a sample of size N,

is graphed in Fig. 3.

<

'=. L] "]'“' T T "ll"r T § T UIVH
~’|i 3.0

)
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E 0

10 100 1000
Sample size, N

Fig. 3. Modal extremes of the standard
normal distribution as a function
of sample size,

When the form of the distribution S or S' is known and exhibits a
mode, Eqs. (2) and (?) may be applied. There are, however, cases for

which no mode exists (in the sense of Fig. 2 where the derivative vanishes),
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and some alternative characteristic must be used to describe the chain

strength. Take for example the simple exponential distribution

s = e-Xx

for which the mean « = 1/ A, 1If Eq. (2) is applied here the result is
not very useful. However, by applying Eq. (1) to find the mean value x

of the least among N, we find

Jis

x-& o 2§

The ratio of average chain strength to average link strength is thus seen

to be Inversely proportional to the number of links.

2. THE GENERAL CHAIN

It was tacitly assumed in the preceding section theat all '"links" in
the chain model were loaded to the same stress, in analogy to a real
chain. While this may be & practical model for filaments or whiskers, in
a massive specimen of meterial there exist, inevitably, stress gradients
caused by geometric features such as holes and other irregularities or
as a result of intentionally applied moments. Localized failure will
result from the most adverse combination of local stress and local
weakness, so that it is not simply the weakest "link" which controls the
initiation of fracture. We must, therefore, account for the variations
in applied stress and the resultant effect on the local probability of
failure.

The material is regarded as containing randomly situated local
failure elements (links or flaws), with a strength

distribution, S(o), expressing the probability that local e:rength
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exceeds O . Within a region & V, where the density of failure elements

i
(flaws) is Py there exists a stress O‘i, and the probability that
fracture does not initiate there is the probability that the number of
failure elements which we expect in this volume will all simultaneously
survive the stress oy This joint probability is given by analogy

with the simple chain:

(5)

:lpiAVi
i

5, * [stay
It should be noted that the number of flaws found in the volume
A V1 is itself a statistical quantity and may be described by a Poisson
distribution. This additional complication will be avoided by confining
attention only to the expected number of flaws £y AVi.
Extending Eq. (5) to consider additional volume elements making up
a total volume V, we can write for the expected probability of joint

survival Sv of all these regions:

Sy * [S(ol)]p'Av‘ [s(oz)]pzsz. .

= ,,Er [S(oi)] piAvi.

izl

Taking logs gives the sum:

In 8, = i P&V, In [S(ci)]'

i=1
By going to the respective limits of AV and N the sum may be replaced

with the volume integral:

In SV z f [pin S(o)] dV
A"
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or

SV = exp%f fpin S(o)) dV}. (6)
v

In » fairly general way we have accounted for the nonuniform stress
and the effect of volume, and, for gcod measure, we have allowed the
flaw density tc be space dependent. If the flaw strength distribution
were known, as well as the flaw density and the applied stress, Eq. (6)
could be used to predict the expected probability of survival of a

specimen. Using

~ 7inS(a) = g(g)

we get

S,;, = exp [—f glo) dV] . (7)
\'/

The mos: coanvenient application of this equation is to assume
teatative forms for the function g(o) and, if experimental results
compare favorably, to utilize the assumed g(o°) in analysis and design

estimates. The well-known Weibull distribution results from putting

cm
g()=(—) .
g 00

JPL Technical Memorandum 33-580
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II. ARRANGING AND PLOTTING STATISTICAL DATA

In the subsequent sections the interpretation of statistical data
is considered in connection with estimating parameters and graphical
depiction of the observations. Here, a short digression will be made to
illustrate a method of assigning probabilities a~" plotting the data.
The method described here is not unique, but it has been found convenient
and reliable.

If a group of N observations of a variable x has been accumulated,
the data should be arranged in serial order with increasing x and each
of the observations numbered (ranked) in order. Now the question is:
what probability does the jth observation represent? It should be clear,
for example, that the smallest observation (rank j = 1) in a group of,
say, ten ultimate strength measurements, should be plotted somewhere
between 0 and 10Z failure probability; and that the sixth of this group
(rank j = 6) should be plotted between 50 and 60% failure probability.
In general the jth observation should be plotted in the interval
(3-1)/8 £F £j/N. Ia fact, all plotting positions recommended in the
literature fall in this interval. Obviously as N becomes large there will
be little difference between (j-1)/N and j/N. According to this plotting
method, no unique probability plotting position is selected. Instead a
line, representing a probability interval, is drawn. The question of a
unique plotting point has been the subject of some controversy, and

various propcsal: have been made, for example:

Feg. Feigh Foigl
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The first two are, of course, the upper and lower bounds of the jth
rank of length 1/N. The third form is the midpoint of the probability
interval. The fourth is the so-called mean rank probability corresponding
to the jth observation. The last expression is the median rank plotting
position. Statistically this point divides the observations of the jth
value into two equal groups. That is, if many samples of size N are
taken, half of the jth observations are above and half below the variable
corresponding with this value of probability. If a specific plotting
position is desired, this one should be used. Finally, it is frequently
useful to normalize the observed variables, using either the sample
average or median as the normalizing factor. This allows samples having
substantial differences in the variable but similar shapes to be
studied jointly. This normalization is discussed in detail in

subsequent sectiomns.

An illustration of this methnd is given in Table 1 and Fig. 4. These
are tensile strength data for glass filaments tested at -196°F. The
columns headed BAVG and BMED are rormalized. 1In the summary at the
bottom of the table CV is the ratic of standard deviation to the mean.

The probability columns give the median rank plotting point, and the
bounds of the probability interval. The plot of this data in Fig. 4
shows that the plotting point does not add much to interpretation or
display of this sample. In later sections the problem of fitting such

data with a theoretical distribution will be considered.
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Table 1. Ranked sample data (column X) shown here are normalized to the mean and
the median (columns BAVG and BMED, respectively;. Plotting points and
intervals are also shown.

GE E-GLASS §GL FIL ~13k F REF AD HOGHT 193

REME F-POINT F~INTERYAL RANK
1 » BRAVG BMED  (J-.3i o (N+. W) J-N 3
1 441,00000 0.503S £, 49222 0, 0205k Q, 03030 1
2 S7¥8.00000 a, 71209 1 bA22% 0. OS0E0 0.0b06 1 z
3 S72.00000 0.71209 (N 0. OH0SY 0.09091 z
4 323, 00000 0, 72441 £, 7OWLS 0, 11078 0.12121 Y
3 b71.00000 Q.82zbbk 1, 30359 0. 14072 N.15152 5
b ?04.00000 0.8k3L2 1, 833852 0. 1706k n. 18182 b
7 ?24,00000 Q. 89190 0. 8b 707 0, 2000 0.21212 7
8  PY4E.0NOCOD 0.9153? 0.8838% 0. 23054 0. 24242 8
QA 744,00000 . A227 £, 89701 0. 20u8 0. 27273% q

10 "34,00000 J, 92892 1, 90293 0. 29042 0. 20%03 10
11 79%.00000 0,973 195210 0.320sb 0.33322 11
12 800.00000 0. 33553 1, 530S 0. 25030 0. Zb3kLM 1z
13 $815.00000 1.00407? [, 705 2, 38024 0. 34X 12
14 327.00000 1.04885 £, 9quZ 0.41018 042424 14
15 822.00mM0 1.02009 £, Q9162 0. 44017 0.4S4SS 15
i 832_D0000 1.02625 0., 9970 0. 4700k 0.48485 1b
1y =3%.00000 1.02871 1.00000 0, 50000 0.51%515% 1?7
18 242,00000 1.03732 1.0033 0.52934 0. 54S4% 18
19 847.00000 1.04749 1.04437 0, 5593 0.5757b 19
20 AY7.00000 1.0424% 1.01437 0. 59982 0, LOLOL 20
21 83%.00000 1.10263 1.0716% 0. 61970 0. b3b3b 21
22 300, 00000 1.10879 1.07784 0, L4970 0. kbbb? 2
23 50%.00000 1,11495 i,0838T (e B 7 0.b%b47 23
4 912.00000 1.122%7 1.09222 0, TO%E el vy 24
25 913.00000 1.12480 1.09341 0, 733%2 N, 75752 2%
2k 915,00000 1.12727 1.09581 . 7ENE 0. ?7e75¢ 2b
27 91b,00000 1.1285%0 1.09701 0. PAN0 n.81818 27
2% 920,00000 1.13343 1.101€0 0.52974 0, BYaYS 28
23 3%0.00000 1.14575 1,11377 0. 88928 n, 87374 29
20 3Tk, 00000 1,153y 1. 1209, 0. 85922 0, 90303 20
1 S44.00000 1.1k300 1. 13054 0. 91316 0, 93929 21
72 9n0, 00000 1.18271 1., 14370 0. 94910 0, 95970 .
I3 974.00000 1, 1993 L. 1bbU7 0. 97904 1.00000 3z

AVERAGE = 811.b9h97

STD DEV = 131,00727

v = (,1bl40

MEDIAN = 83%, 00000
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III. SOME PROPERTIES OF THE WEIBULL DISTRIBUTION

1.  ANALYTICAL FORM

The conventional form of the so-called two-parameter Weibull

S = exp [- f (;‘:))m dv] (8

\Y

distribution is:

where S is the probability of survival, < is an arbitrary applied stress
in & volume V, and m and Jp are parameters.

To see the implication of this formula, consider a specimen under uniform,
aniaxial tension. Tha specimen is assumed to fail according to the weakest-
link mode"; that is, uoon the initiation of fracture anywhere, gross failure

occurs, If the stress is everywhere the same, Eq. (8) becomes
m
S = exp [.(-o—f’—) V'], (9)
0

This distribution is shown for V = 1 in Fig. 5. The variability
decreases as m increases, and for low values of m, say less than 2, it becomes

very obviously nonsymmetric. Below m = 1 there is no mode.

)

Failure probability, 1-S
(=]
W

o

1.5

o
(=]
(8 ]
—
o

°/§0

Fig. 5 Shapes of Weibull distributions.
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One of the purposes of strength measurements on a particular material is
to estimate the value of the modulus m for that material so as to characterize
the material for structural reliability forecasts. Various analytical and
graphical method of making such estimates will be discussed later.

In the case of flexural stress, a form different from Eq.(9) results. Using
6 =0 (lc)("s‘) to describe the stress distribution in a simple centrally

loaded rectangular beam (of half-height ¢, half-span s, and total volume

(a1 m VB ]
- (B ., (0
S = exp [ ("o) 2(m + 1)2

The change of stress distribution has introduced a factor affecting

VB) we find

only the volume. The situation in simple bending is equivalent analytically
to uniform tension provided appropriate correction is applied to the volume.

This is a manifestation of the size effect, which is discussed next.

2. THE SIZE EFFECT

Large specimens of brittle or "weakest-link"material are weaker than
small specimens, just as the long chain is weaker than the short
one. If specimens of gizes V1 and V2 are tensile-tested and are character-
ized by similar values of m and 95, Eq. (9) may be used to compare the
strength at the same probability of failure (when m and o are the same
this also compares the mean strengths of both volumes), leading to

o;n v, = agn'v

1 2’

and the well-known strength size effect

o 1/m

This equation immediately suggests a method for estimating m.

JPL Technical Memcerandum 33-580



Rewriting it in logarithmic form gives

and a plot of strength ratios vs volume ratios on logarithmic coordinates
should yield a straight line of slope l/m if the Weibull distribution
is appropriate. In fact, Eq. (11) holds alsoc for any stress distribution
provided that the stresses applied to the various sized specimens are geo-
metrically similar. As pointed out before, the effective size is altered by
changing the stress distribution. To compare, for example, the case of
uniform tension with simple bending, we use Eqs. (9) and (10) (with
identifying subscripts) at equal probabilities, getting

VB

onﬂ =¢#n \'
B om+n2 T T

and the ratic of strengths is

. v 1/m
-cf [(T%) 2(m + 1)2] , (12)

showing flexural strength greater than tensile strength, especially for
more variable material.

In a similar way the expected strengths in uniform bending, or tension,
or any stress distribution, may be compared at equal probabilities of failure,
simply by equating the corresponding exponential terms from Eq. (8).

We can express this size effect in a general way (for constant m and<ﬂ5)
as follows. The applied stress is written in terms of a reference stress
(say the maximum tensile stress) and a geometric function which describes
the stress distribution (as was done above for the simple beam), that is,

oi[fi(V)], The exponential terms of Eq. (8) for two arbitrary cases

being cowpared become oxln [fl(v)]m dv = a;n f [fz(V)]m av,
v v&

1

JPL Technical Memorandum 33-580
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and the general expression for size effect becomes

it f"z [x)” dv-ll/m (13)
2 | f [, 0] d\j

V1

So far the flaws in the material have been tacitly assumed to be distributed

throughout the volume and the integrations have been carried throughout the

specimen volume. The strength-controlling flaws may, however, be confined in
many cases to the surface (e.g. 1in glass) or even to the edges,and along

the length of reinforcing fibers. For these cases the form of the stress
distribution and the region of integration are different. Let's recon-
sider, for example, the simple beam of width b with a surface distribution

of flaws. The exponential term now becomes

m s m

(Z—E) 2 [ ) bax
0 x=0

L\ —~— J

the bottom beam surface

@ f [

the surface on vertical sides of the
beam, subject to tension

m
G [
% m+1 (m+1)2

where A is the area of the bottom surface in tension and B the total area

This leads us to

of the vertical surfaces in tension.
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Equation (13) was used to calculate the size effects in tension,
simple bending, and uniform bending for flaws distributed throughouut the
volume, area, or length. The resulting formulas are collected in Table 2.

The size effect helps to explain why, even in brittle materials, the
influence of stress concentrations, at holas or notches, is not as great
as would be expected from the theoretical stress concentration factor
and a maximum stress failure criterion. The large theoretical stresses
are operative in very small volumes within which the probability of

finding weakness is greatly diminished.

3.  STANDARDIZED FORMS OF THE WEIBULL DISTRIBUTION

Just as the application of the normal distribution is broadened and
eased by use of a standard normalized variable, so also is the case with
the Weibull distribution. Equation (8) is rewritten using a reference
stress and geometric function for stress distribution and put into

logarithmic form:
m
Ing =(£> f Eov)™ av.
%0
A"

If the strength o‘p corresponds to the probability Sp (e.g., d"p might

be the median and Sp = 0.5), then the constant 01) is given by
1
1\ m ln(s—)
(35) f Ev)™ av = ——P
v %p

and may be eliminated from Eq. (8) to give a new, and flexible, normalized
[ 1\/o m
o
5o/

exp [— (ln-sl—) nm]. (14)
P

form:

w
[
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It can be shown that if a; is the mean value of tne reference stress

at fracture then
m
1 m
: (;)z @QO +;EH T

This result allows us to write the distributuion of Eq. (14) in terms

of a mean-normalized variable:

S = exp (_erm) (15)

where g8 = gfo mean'

Alternatively it may be more convenient or desirable to normalize
to the stress at some other probability (e.g., in an incomplete test in
which only a fraction of the test specimens have been observed); for

example, the median. TFor this case Sp = 0.5 and Eq. (14) becomes

S = exp (-o.ssaxm) (16)

where A * °/°median'

Experience has shown that, by and large, Eqs. (15) and {16) will give
adequate service. Both of these normalized forms of the Weibull distribution
have been plotted onto useful working charts in Figs. 6 and 7.

The normalized form is independent of the detailed stress distribution
and therefore allows, in principle, the pooling of diverse groups of test
data, if each has been appropriately normalized. The scaling parameter 06
has been replaced by an estimate of the mean or median derived from the
sample  and only m remains to be estimated in order to fit a set of
observations with a Weibull function. Furthermore, the normalized form
lends itself readily to analytical manipulation, for example to determination

of the variance aad statistical behavior of extreme values, discussed next,
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4. EXTREME VALUES OF THE WEIBULL DISTRIBUTION
Using the general formulas for extreme valves given in Sec. I,

we find the modal extremes of the normalized Weibull distribution

7 nin and ”max’ to be given by

- 1/m
"min ~ = 1.1 (17)
mN lns—
P
and
m-1 l m \
N=|1- —m T exp{ling- Max) = Y *1- (18)
ma ax lns— p
E
The modal range is determined from the difference between these
extremes.

In figs. 8 and 9 are shown the extreme values and range, normalized
to the mean. These charts give a useful perspective of the extreme-
value behavior as sample size (or volume) increases. Equations (17) and
(18) may be used to construct similar charts for median-normalized variables.
A commonly used index of variability is the coefficient of variation CV
dafined as the ratio of standard deviation to sample mean.

We can easily calculate the coefficient of variation of the

normalized Weibull distribution as well as the coefficient of variation of
of the least values. The cumulative distribution of least values is,

in accvordance with Eq. (1):
N

G=1-8

1- exp [N(lnsl—p)nm].
The mean value of this distribution (the mean least value) is
[ -
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The formula for the variance is

dS)
N
o dn.

(

Q0
‘4 (n -g)2

variance
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To carry out the integration it will be useful to employ the following

0 m
integral formula: H(p,c,m) = f xP e X ax

0
I‘(l +1tp )
- m
(1 +p) 1P}/ m
The standard deviation of the least among N is found to bte

-

1 I +2/m) - ICQ + 1/m)P
— : = . {20)
)

The coefficient ot variation for the Weibull distribution is ob-~

tained by combining Eqs. (19) und (20) and putting N = 1,

Cv = 1+2/m -1, 2
J fra + I/m)]; en

The standard deviation of the least values in a sample of size N
may be compared with the sample mean or with the mean of the least values.

The standard deviation of the least values relative to the sample mean

is given by ) 3w
-1
CvV = 2 :
N/mdr@ + 1/m))

while the coefficient of variation of the least values 1s the same as
Eq. (21). Note in the last two equations that all reference to the norm-

alizing term Zn(l/Sp) has vanished. Equation (21) is graphed in

Fig. 10 where two approximations are shown:
CVs= l—xﬁg (a fair approximation),

1 0.94
CVs (—-—) (an excellent approx-
m imation).

These approximations and the graph are handy for thumb-rule estimates.
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5. OTHER ESTIMATORS

There are, of cource, many ways to estimate the parameters of a
hypothetical distribution from the observed data. One of the more
intriguing is the method of "maximum likelihood" which, in certain
respects, would be expected to be at least as precise as, if not more
precise than, any other estimator. Its application generally (the
Weibull distribution included) requires an electronic computer, and
therefore it may not be worth the effort if a computer is not readily
available. In brief the method is as follows. If the probability
density is f(x,uk) where the u, are parameters of the distribution, a
function is formed v.th the observations X1 Xy x3, ceuy xj, sees Xy
which is the simultaneous product of f(xj,uk); that is, the joint

probability density:

N
®-= 'II f(xj.uk).

Taking logs gives
N

Ine=L=), fx;,u,).
=1

The maximum of this function, also called the "likelihood function," is

sought by setting 8L/ auk equal to zero:

N
oL .o.-% 8
—a—u-; 0 2 o f(xj, uk)
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This gives k equations with k unknowns (the parameters uk). If certain
requirements are met by the function L, these equations may be solved for
the uy parameters. The parameters u computed this way are called
maximum likelihood estimates.

Still another analytical approach is a point-by-point estimate of m,
using each ranked observation separately, and finally combining these
individual estimates in a weighted average to give the sample
estimate. Using Eq. (14) and solving for m,

m = fﬁ%;lnﬁéﬁg£%§].

The median rank plotting position for the jth observation 7 j is

. j-0.3 _ N-j+07
Sj 1- N+0.4 N+0.4 °

Therefore the jth observation may be used to estimate m by

N +0.4
. lnl“ -1 +0.
rnj in "j in{l p

Each of the j estimates of m should be weighted in accordance with the
sensitivity of m to changes of S. Since the charts of Figs. 6 and 7 use
coordinates of S and log m, a weighting factor for the graphical estimates
is

- |
¥~ ldinml

That is, the steeper lines on the charts give more reliable estimates of m,
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The formula for w, becomes

3

w, =
J

1 m;
(lns—p)(ln nJ.) mj (nj) J

o Fe) 7

The m-estimate is the weighted average:

3>
2[5 Mz
E
B
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6. HOW GOOD ARE THE m-ESTIMATES?

A broad answer to this question is -- not very! A study was made
of the different methods of estimating m, using computer-generated
samples drawn from known, controlled parent distributicns. The
following estimators were investigated:

1) Minimum value.

2) Maximum value.

3) Range.

4) Coefficient of variationm.

5) Maximum 1likelihood.

6) Log-log graphical estimates (Fig. 11).

7) Semilog graphical estimates (Fig. 6).

No one method appeared consistently superior for the range of m-values
(3-30) and sample sizes (10-100) studied. Broadly speaking, the estimates
of m were normally distributed about the true value with a coefficient

variation of 41/N. The results of the study are summarized in Fig. 11,

0.4 1 | I N O L L

0.3 .ﬁ

0-217 %\ 4 b

e

I
!

!

icient of variation of m
§'\/

Coe

0'051 1 I e
10 20 30 40 5040 80 100

Somple size, N

Fig. 11.. Variability of m-estimators.
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IV. ESTIMATING THE WEIBULL MODULUS, m, FROM OBSERVED DATA

After a set of data has been accumulated, say N observations of
strength for brittle beams, it is possible to interpret the data and
determine whether a Weibull distribution gives a good fit and what the
best choice of the modulus m is to fit the observed data. Once the
distribution is completely defined, it is possible to predict the
strength of other structures of the same material operating under known
stress distribution. It is also possible to make a straightforward
determination of the probability of survival (reliability) for a given
mass of the material under specified operational conditions. By this
analysis the "safety factor" used in design can be directly related to
the probability of survival.

Assuming the experimental data has been arranged and tabulated as
described in Sec. II, a number of provisional estimates of m may be
quickly made for thumb-rule purposes. The final choice should result
from a graphical examination. Various m-estimates will now be described.

To illustrate the application of the various estimators, a sample
of 10 observations was prepared, drawn at random from a parent population
having a Weibull-distribution with m = 6 and a mean of 1. Twenty
samples of 10 each were actually drawn. The 20 least values (rank = 1)
were averaged to give the first entry in Table 3. The 20 next-to-least
values (rark = 2) were averaged to give the second entry, and so on.

Thus, each of the table entries is an average of 20 values.
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Table 3. Sample data for illustrating various methods of estimating the Weibull
modulus m.

Median rank
plotting point,
Fraction of Fraction of j - 0.3 Probability

Rank, j mean median T\I‘]_-*_O—Z inter\y .l
1 0.660 0.654 0.067 0-0.1
2 0.807 0.799 0.163 0.1-0.2
3 0.890 0.882 0.26 0.2-0.3
4 0.950 0.941 0.356 0.3-0.4
5 0.983 0.974 0.452 0.4-0.5
6 1.035 1.025 0.548 0.5-0.6
7 1.089 1.08 0.644 0.6-0.7
8 1.135 1.124 0.74 0.7-0.8
g 1.192 1.181 0.837 0.8-0.9
10 1.257 1.245 0.923 0.9-1.0

Statistical determinations:
Mean = 1,000
cv =0.182*
Median = 1.009

*
The value of CV for the sample is computed by

. z:(x/,ii~1)2
CV = _— T

where //A\ is the sample average and N the sample size.

1. SINGLE NUMBER ESTIMATES
All of the working charts presented in Sec. III may be used to

estimate m from observed data. Figure 8, 9, and 10 are directly applied

JPL Technical Memorandum 33-580



with the observed extreme values, range, and coefficient of variation,
respectively. The following estimates of m are obtained for the sample

data in Table 3:

Graph Estimate

Bas.s of estimate used of m
Maximum (1.257) Fig. 8 6
Minimum (0.660) Fig. 8 5
Range (0.597) Fig. 9 5.5
CV (0.182) Fig. 10 6.4

2. GRAPHICAL ESTIMATES

Recall Eq. (14) and write it in logarithmic form to get:

log (Iné) =m log n +log (lnsi) (22)

On conventional log-log coordinates the data may be approximated with a
straight line of slope m. In fact, such probability paper 1s available
with suitably labeled coordinates, which eliminates the need to compute
in(3/S). Fig. 12 shows how this probability paper may be constructed.
The slope of the straight line approximation may be measured directly to
get an estimate of m. Figure 13 shows the sample data (from Table 3)
plotted on this paper (both the probability plotting point and interval
are shown), and the slope of a straight line fitted by eye to the data.
Charts of the normalized distributions (e.g., Figs. 6 and 7) are
preferable to the log-log chart of Fig. 13 because they present the
data in a more useful perspective. Therefore the data of Table 3 have
been plotted in mean-normalized form in Fig. 14 and in median-normalized

form in Fig. 15.
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These graphs show m = 6 to be an excellent fit to the

data, and furthermore they give some information on the m-values

represented in the sample.

In order to get a feeling for the way the approximation fits the
sample data, a Cartesian plot was made using Fig. 14 as a basis. This
plot, Fig. 16 exhibits a very satisfactory comparison between the

observed data and the Weibull distribution with m = 6.

Probabili

0.4 0.6 0.8 1.0 1.2

Fraction of average

Fig. 16. Cartesian piot of sample data.
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V. SOME COMMENTS ON APPLICATION

Is there any point in bothering with a statistical approach to
brittle fracture when the methods of fracture mechanics are available
to explain brittle fracture? After all, in principle, we need only know
the geometry of the worst flaw in a structure and, from laboratory
measurements of fracture toughness, we can predict the failure conditions.
While the theoretical and experimental contributions of fracture
mechanics have been substantial, a certain amount of caution must be
exercised. Imnspection of a structure for flaws involves some risk of
passing over or missing a critical feature. Those flaws which are
detected can be defined geometrically only within certain limits, and
even repeated measurements on laboratory samples with controlled,
artificially induced cracks exhibit a serious variability in fracture
toughness.

A particularly striking example of fracture toughness variability
is shown in Fig. 17. If we can assume that the material was carefully
selected and the laboratory precracking of specimens was carefully
controlled, the cause of this variability must be ascribed to
statistically varying material properties.

Application of data such as that shown in Fig. 17 will require
consideration of size, since more samples or a larger structure will
increase the probability of experiencing a value of fracture toughness
even less than coserved in laboratory tests.

Conventional fracture mechanics does not account for this size

effect. The following dramatic example will illustrate the point.*

J. E. Srawley and J. B. Esgar, Lewis Research Center, Cleveland,
Ohio, Rept. NASA-TM-X-1194 {Jan. 1966).
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Fig. 17. Plan2 strain fracture toughness
of 18% nickel maraging steels.
(Froman W. F. Brown and J. E.
Srawiey, Plane Strain Crack
Tcoughness Testing of High

Strength Metallic Materials,
STM-STP-410, 1966.)

In April of 1965, a 260-inch diameter rocket motor case failed during
hydro-testing, at 56% of the intended proof pressure. Fracture emanated
from a flaw in a weld. Analysis of the flaw indicated that the apparent
fracture toughness was 57,000 psi-‘VI;: Laboratory tests of a few
precracked weld specimens gave the results shown in Table 4.

In the report, some comment is made regarding the discrepanc' between
the average fracture toughness of the laboratory specimens and the
considerably lower fracture toughness of the operational structure.
However, testing only 2 in. of weld out of a total of 1000 ft. of weld
length requires statistical accounting for the effect of size. In view
of the limited sample size estimates are necessarily going to be rough.

Using the observed value of CV with Fig. 10 we find m = 25. If the

laboratory test samples can be considered to be representative of the
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Table 4. Results of fracture toughness
tests on five weld samples, each
2/8 by 3/8 in. in cross section,
out of a total of 1000 ft of weld.
(Data from NASA TM-X-1194)

Fracture toughness,
Specimen No. psi-Vin.

77,700
77,500
75,400
84,500
75,000

(S S R

Mean
Std. dev.
Cv

78,020
3,820
0.049

weld in the motor case, then the size effect will be given by Eq. (11):

1/25
Kmotor case = / Vsample

Ksample vmotor case

If we substitute in this equation the experimentally determined value

for Ksample’ 78,020 psi- in., and the ratio of sample size to total weld

size, 2 in./12,000 in. or 1/6000, we obtain

] 1/25
K, otor cage - 18-020(1/6000)

= 55,090 psi-~in. .

Therefore, the fracture toughness exhibited by the worst region in the
weld is, for us, no surprise. The coincidence of the worst flaw with

the weakest region should also be anticipated since thermal-stress induced
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flaws and effects of shock or partial loading will be most detrimental
in the inferior region.

Actually there are three factors, all of them fundamentally
statistical, which must be considered in evaluating the capacity of an
operational structure. First is the distribution of "fracture toughness,"
presumed to be a material property. Second is the inherent distribution
of flaw intensities in the fabricated structure {(a low flaw intensity
located in a region of low toughness may be critical). Third is the
number of flaws and their spatial disposition. If all three factors
are accounted for, a statement of reliability under specific operational
conditions can be made. Conditions or materials which result in
time-dependent changes can greatly complicate the problem. Examples of
these are corrosive environments which cause sharpening and intensification
of flaws, or physical changes in the material resulting in lowered
fracture toughness, or gross geometric effects resulting from flow or
corrosion which substantially alter the nominal stress field.

In designing an operational structure made of massive brittle
material there is a strong motivation to employ only statically
determinate supports, to allow precise calculation of stresses. However,
since brittle materials are frequently quite strong in compression, it
may be better in certain circumstances to give up detailed knowledge
of the working stresses, in exchange for redundant support and 'crack-
tolerant' behavior. A simple example is shown in Fig. 18 comparing
alumina (A1203) beams tested in simple flexure and as redundant beams

with built-in ends. With redundancy the first tensile fractures are not
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Redundant-Support Tests

Behavior comparison tests were made on
three sizes of olumina beams, using the
fixture shown at right to produce re-
dundont end moments. Al specimens
were muchined from a single slab of
green-fired alumina (Wesgo Al-300) and
fired simultaneously. Behavior of each
size tested (example figure, below) shows
good reproducibility. Resits of these
tests on redundantly supported beains,
and on simply supported beams, ore list-
ed in the table below.

A
' |
B e A
1
T ]
’ /
I — -~ - = ,
 Predicted moaimum
= 1 bending-load ronge < i
£ »
= 1 iy Fracture-Test Results on Simple and Fixed-End Beams
i il et il Rl Y /4 2 5
3 J B¢ eclmen Maxl r . —TFiret ¥ Uhimate Fractare
iRt Sub R A Fa 1-t1- Sise Jesd  Fallureload Lesda Doflection  Lead Deflection
Center (1n.) avy (Ib) ab) (in.) b (n)
fratiwes
Slaply Sup-
ported Benea ——————- Faed-End ( Reams
%K 108 n2 136 0.0040 s 0.087
2 1Bs  0.0045 2% 0.8
%z 350 00 W0 0.0040 w0  0.1901
M 302 to 500  0.0085 140 0.000
77, 700 50 0.0088 1340 ©0.000
Nxw 800 1000 1000 0.0010 M0 00T
s80 to 1080  0.0088 200 0078
0 1980 1000  0.0070 32/ 0.088
ooor 2 s 00 2 s ot
*Predicted from simple-besm rasults, but under fixed-end conditions
Defiection in) 11oose end constraints

"Fig. 18, Redundant support tests

followed by collapse - instead an archlike stability develops and eventual
compressive failure of the segments is the cause of the collapse. The
load-carrying capability of the redundant structure is substantially
higher.

While some so-called brittle materials may be fairly well described

by the "weakest link" or series model, it is abundantly clear that this
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description of material failure is too zevere. Even the most '"brittle"
materials demonstrate capacities for partial and multiple fracture, so

that redundency for load transmission is inevitably present, and it is

only when such redundancy is exhausted that the weakest link decides

collapse.
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Vi. APPLICATIONS TO MULTIFILAMENT STRANDS AND COMPOSITES

1. BRITTLE REINFORCING FILAMENTS

There is a rapidly growing interest in filament-reinforcad
structures. Small-diameter filaments and single-crystal whiskers
currently being made exhibit very high strengths, in certain cases
substantially above 106 psi. These are highiy perfect structures,
having fewer and less severe flaws than massive specimens of the same
material. Such filaments are combined to form strands which may be
woven into cloth or incorporated as non-woven layers in a structural
composite. Massive structures are obtained with superior properties
in certain directions. Filament winding is another means of producing
strong lightweight structures. One of the most common reinforcing
materials is the brittle material, glass. In fact, most high-strength
reinforcing materials are brittle (e.g., graphite, boron, beryllium,
etc.). We may, therefore, interpret the strength of single filaments
according to the statistical methods developed in the previous sectioms,
and extend the analysis to predict the strength of a multifilament
strand. In doing so, one must be cautious about applying the frequently
used "law of mixtures" to estimate strength. This "law'" states that the
ntrength of a composite is the weighted average of the stresses at
failure in the constituents. That 1is, if the filaments in a composite
exhibit a mean strength d}.and occupy a volume or area fraction Vf,

while at the filment failure strain éf the matrix carries the stress

%méif in the remaining region 1 - V., the composite strength will be

E
= m
O'C . ofvf + O'f Ef (1 e Vf) .
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We will show that, inevitably, the '"law of mixtures" should overestimate
strength of an ideal multifilament strand. Translation efficiencies
frequently quoted for composites are predicated on the erroneous
assumption that the filament bundle should display a strength equal to

the average of its constituents.

2. FAILURE PROCESS IN AN IDEAL STRAND

Assume a group of equally loaded filaments with a unique Young's
modulus, with no interactions between filaments (that is, no shear
coupling such as would result from twist, friction, or a binder), and
independent failure wherein the failure of any filament does not
precipitate immediate adjacent failure or alteration of the uniform
loading among the surviving filaments. Take, for example, a strand
made of 10 filaments with strengths ranked as shown iu Table 5.

At what load would an ideal bundle of these filaments fail? Since
the filaments are uniformly loaded, when the unit load (load per
filament) exceeds 6.1 the weakest filament fails. This would occur at a
total load of (6.1)(10) = 61. The loed in the nine surviving intact
filaments would then be 61/9 = 6.78, and at this load no further filament
failure would occur.

When the nine survivors are subject to & unit load of 7.4, the next
filament would fail. This is a totel load of (7.4)(9) = 66,6 The unit
load in the eight survivors would be 66.3/8 = £.32, and no further
fracture would follow.

The next filament would fail at a unit load ¢f 8.5 or a total lvad
of 8.5(8) = 68.0. The unit lesd iu the seven rewmaining filaments would

be 68/7 = 9.7; since this exceeds th: stjength ¢f the next weakest
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Table 5. Ranked strengths of individyal;
filaments in an ideal strand of
10 filaments, to illustrate
breaking behavior. Remaining
capacity at any time is the total
load on the strand required to
break the weakest unbroken
filament remaining.

Filament Inverse Remaining

Rank strength rank capacity
1 6.1 10 61
2 7.4 9 66.6
3 8.5 8 68"
4 9.2 7 64.4
5 10.1 6 60.6
6 10.6 5 53
7 11.0 4 44
8 11.6 3 34.8
9 12,3 2 24,6
10 13.2 1 13.2
Mean = 10.0

*
Overall maximum (bundle capacity).

filament, it would fail also, causing the unit load in the six remaining
filaments to rise to 68/6 = 11.3. This, too, exceeds the strength of the
next weakest filament anu, following the next failure, the unit load
rises to 68/5 = 13,6. Another filament snaps, leaving four filaments the
weakest of which has a strength 11,0, and clearly our rope is done for -
unless the load is reduced.

The last four filaments, for example, could sustain (11.0)(4) = 44
before the weakest among them failed. In summary, we discover that this
idéal bundle has a maximum nominal unit capacity of 6.8 whereas the average
strength of the constituent filaments is 10.0, and thus we were able to
achieve idea!'ly only 68% of the average strength that would have been

predicted by the "law of mixtures."
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The third column in Table 5 contains the inverse ranks of the filaments,
which facilitate the computation of bundie capacity.- Tie remaining
bundle capacity 1s simply the product of the filament strength and its
inverse rank. Note that for the data shown here (Sample 1), the bundle
capacity rises monotonically to a maximum and then decreases monotonically
to the last (and strongest) filament.

Another set of data (Sample 2) is shown in Table 6. Here the filament
strengths are quite widely scattered and produce a series of local maxima
of the remaining bundle capacity- When loaded, this particular bundle
would exhibit partial breaking at 61, 68, and 70, and ultimate failure
at 75 with only three filaments still intact. Here the nominal unit load
at failure (7.5) is less than half of the average filament strength. The
strength distributions of the Case 1 and Case 2 filament samples and the

bundle capacities are plotted in Fig. 19.

Table 6. Breaking behavior of a 10-
filament strand with filament
strength distribution different
from that in Table 5.

Filament Inverse Remaining
strength rank cepacity
6.1 10 61"
6.5 9 58.5
8.5 8 68"
9.2 7 64.4
11.5 6 66.3

14 5 70*
15 4 60
25 3 75™*
30 2 60
32 1 32
15.8 (mean)

—

* ocal maximum.
Overall maximum (bundle capacity).
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Fig. 19. Plots of individual filament strength and bundle capacity (data fron. Tables 5
and 6).

3. ANALYSIS OF IDEAL UNIFORMLY LOADED FREE STRANDS
If S(o") is the upper rank strength distribution for filaments (that
Is, S is the probability that strength exceeds o ), the nominal stress

in a bundle wherein the applied unit stress is o will be
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Opom = S(o). (23)

Here S is analogous to the "inverse rank" in the previous example, and
T is the strength of the weakest filament still intact. The bundle's
capacity is the maximum vaiue o-nom may achieve. We find this by setting

its derivative with respect to O equal to zero:

do
nom

= ' +S =0
do oS

The solation of this equatiun will be the maximum stress achieved in
the filaments, 0"*,
-_S
€+ "3 (24)
and the nominal bundle strength will be

S om - Y% S(a ), (25)
or, in normalized terms,

Mhom ~ M* S(ny-

Various choices for the strength distribution may be made to explore
the trends of formula (23). Let us take, for example, tbe Weibull
distribution of Eq. (14), repeated below:

S =exp [~(lngl)nu'] (26)

L P

Then the solution of Ey. (25) gives

1 fm
Nx = . (27)

m lnsl;

JPI. Technical Memorandum 33-580



The fraction remaining intact at this maximum stress is S(7%,),

S(n,) = exp (-;11-), (28)

and the nominal bundle strength becomes

Tnom meil n;-.—l—

Recalling that for the mean-normalized Weibull distribution,

m
1 ey & L =,
Ing~ = [1"(1 + m)] r

(29)

we find

g i _l_)l/m

nom (me

% and B« =(Eﬂ ‘% (30)

These formulas give the maximum stress achieved in the filaments
and the expected nominal strength of an ideal, uniformly loaded, strand.
These ara graphed in Fig. 20, which shows that, even with about 57 std.
dev. {m = 25), the nominal bundle strength only achieves 85% of the
filament average.

In many cases formula (30) can be applied as a practical estimate of
cemposite strength.

If the composite is carefully fabricated, with the proper choice of
matrix, its strength will exceed predictions based on the free-strand

formulas above; however, misslignment, nonuniform loading, filament
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Fig. 20.
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Maximum filament stress, B, #nd nominzl bundle strength, Bn both

normalized to {i.e., divided by) average filament strength. om

damage in fabrication, and other factors may bring the actual strength
of a composite down to, or even below, the values predicted for the
idealized, uniformly loaded free strand. The fabrication zriabies
controlling composite strength are many and very often quite subtle,
requiring a specific evaluation of a particular composite for
characterization. The computations described earlier in this section
should serve as a guide to what may reasonably be expected. As a thumb-
rule example, a well-designed fiber composite with filaments having a

trength distribution with m = 10 should have a nominal strength around
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50% of the filament average strength (with 70%Z or so of the volume
occupied by filaments). On the other hand, it will be an unusual
composite whicii exhibits a nominal strength as high as 70 or 75% of

the average filament strength.

The bundles illustrated in Fig. 19 can be evaluated analytically

by Eq. (30). The comparisons are:

Bundle No. Nominal Strength |Predicted Strength

1 6.8 6.4

2 7.5 7.0

When the applied load is nonuniform, as in flexure of a composite
beam, the fact that cnly part of the filaments are highly loaded
results in early fracture. This is an example of the adage, '"united
they stand, divided they fall." All of us take advantage, at least
implicitly, of this principle (divide and conquer) when we tear cloth.
Statistical analysis show: that the resistance of a multifilament
strand to a linearly varying *cnsion may be less than half of its
cavacity under uniform loading.

4, STRENGTH RETENTION OF DAMAGED MULTIFILAMENT STRANDS

Generally speaking, some fraction of the weakest filaments in the
ideal strand fail before the ultimate capacity is reached. Therefore,
a certain amount of internal iracture is tolerated without impairment
of strand capacity. If, somehow, progressive severing of filaments
occurred beyond this level, the capacity of the strand would decrease.

If the strength distribution is approximately unimodal, the strength
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retention of a strand will be (in nscimalized form)

= (31)
Nretained n S(n)

where the fraction intact S is less than the critical fraction S(77*).

For convenience we define a strength retention ratio as the ratio

of retained strength to maximum strand capacity (using Eq. (25)):

R = —L-(ﬂ;yn* g‘n) .

(32)
If S is taken as a Weibull distribution we can write Y] in terms of
S,

and the strength retention ratio becomes

1 1/m
R = (me ln§> S. (33

The S-term in this equation (the fraction surviving) is an index

of the degree of progressive damage among the weakest filaments of the
strand. This equation is plotted in Fig. 21
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Fig. 21. Strength retention of progres-
sively damaged strands, based
on Weibull distribution. The
strength retention ratio, R, is
the ratio of remaining capacity
to maximum capacity.

VII. ESTIMATION OF WEIBULL PARAMETERS FOR

ORGANIC FIBER COMPOSITE (PRD/EPOXY) STRANDS

Large sample sizes of PRD/epoxy strands are being tested as part of
a NASA sponsored program at the Lawrence Livermore Laboratory. Results
of this test program are being reported in the progress reports under
Contract C-13980-C and in the literature*. Figures 22 and 23 present a

series of tensile strength measurement on single-end (280-filament)

*
Chiao, T. T. and Moore, R. L., "Strength of an Organic Fiber in an
Epoxy Matrix,'" UCRL Preprint - 74051.
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composite strands. Figure 22 gives the first 120 measured values. This
particular phase of the program was completed with a total of 484 tests,
shown in Fig. 23. Weibull distribution functions with m = 25 and m = 20
are shown through the data. The functional fits are quite good over
most of the data and are consistent with the skewness which prevails in
both samples. The Weibull modulus estimates in these cases were obtained
by plotting data onto the median-normalized chart of Fig. 7. Single
point estimates, as described in Sec. III, showed the utility of these
quick methods.

Table 7 presents various single-point estimators of Weibull modulus,

as well as the value chosen from the graphical median plot.

Table 7

WEIBULL MODULUS FOR PRD 49/EPOXY STRANDS

Method Figure 22 Data Figure 23 Data
Least Value 15 * 18 *
Max. Value 25 25 **
Range 18 * 20
Coeff. of Var. 25 20
Median Plot 25 20

* Conservative at the minimum values

** Nonconservative at the minimum values

The table illustrates the value of several rapid estimators to yield

a functional form which gives a reasonable fit to the data.
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It is significant that in both samples the Weibull moduli estimated
by the least values were well below other single-point estimates. These
data suggest an overall downward shift of properties from the results of
the first 120 to the sample of 484. In addition to this shift, the
isolated minimum value of Fig. 22 is reflected in the grouping of three
low values shown in Fig. 23. There is a possibility of a distinct
second mode in the population, located around 0.75 and representing
about 17 of the population. Such a mode may be very crucial in
reliability estimates.

The deviations between the Weibull distribution shown in Figs. 22
and 23 and the location of the observed least values were estimated by

inverting Eq. (16) and using the median rank probability assignment:

1/m
)\r = in (N + 0.4 )
) N+ 0.7 -r
In(2)

and comparing the predicted values of A with the observed values, as
shown in Table 8.

The negative deviation values correspond to over—estimates of strength
and contribute to suspicion of least-value behavior.

It is interesting to apply the size effect of Eq. (17) to these data.
The most probable minimum values of ideal samples are related by Nl/m.
Using the first (120) sample with m = 25 as a basis, the predic*ed least
value in the second sample (484) is 368 ksi, identical with the observed

value.

It is not known at present whether the causes of the statistical
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differences between thece two data sets are material and process factors

or testing and handling methods.

Table 8
DEVIATION BETWEEN PREDICTED AND OBSLERVED

STRENGTH IN PRD 49/FFOXY SAMPLES

Predict.] Fig. 1 Predict.| Fig. 2
Rank | m = 25 Obs. | Deviation m = 20 Obs. Deviation
1 .824 .74 -0.08 0.73 .72 -0.01
2 .855 .875 +0.02 775 <742 -0.03
3 .871 .882 +0.01 .796 .758 -0.04
4 .882 .892 +0.01 .808 .8 -0.
5 .891 .895 +0.004 .815 .82 -0.
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VIII. CONCLUSION

We have reviewed some statistical models that attempt to explain
both the variability and the size dependence of the ultimate strength
of brittle and fibrous materials., Specific calculations were carried
out using the Weibull distribution to describe local weakness of the
uaterial. Experience has shown this distribution to have wide applicability,
and 1t bas consequently become a tool in diverse fields. In addition to
interpreting strength, it has been used in studying fatigue, stress rupture,
meteorology, gust loading, and other areas where extreme values are of
interest. It has also demonstrated scme definite shortcomings, particularly
in the magnitude of the size effect prediction. In most studies of size
effect the observed strength changes are not as great as predicted by the
Weibull model. This feature is useful for scale-up or in fiber-
reinforced structure since predictions will tend to be conservative;
however, they may sometimes be too conservative to be tolerable.

The methods and graphs presented should facilitate processing,
plotting, and fitting observations with the "best" two~parameter Weibull
distribution and provide, at a glance, a perspective of least-value
behavior. The application to redundant parallel systems of brittle
elements (multifilament strands) produced some realistic bounds on the
strength that might be achieved in a composite and indicated the degree
of optimism which may be contained in the "law of mixtures.'

The statistica! approach is basically a local fracture model which,
in conjunction with analysis of stress distribution, can lead to a

statistical conclusion regarding a structure's reliability. It is,
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therefore, a logical supplement to elastic stress analysis when
variability of conventionally measured properties 1s dangerously large.
Application of the methods and charts was demonstrated on recent
organic-fiber composite data and illustrated the utility of the Weibull
distribution as well as possible problems which might be associated

with infrequent second modes.
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